太陽電池從研究室走向工廠,實驗研究走向規(guī)模化生產是其發(fā)展的道路,所以能夠達到工業(yè)化生產的特征應該是:
[1]電池的制作工藝能夠滿足流水線作業(yè);
[2]能夠大規(guī)模、現代化生產;
[3]達到、低成本。
當然,其主要目標是降低太陽電池的生產成本。多晶硅電池的主要發(fā)展方向朝著大面積、薄襯底。例如,市場上可見到125×125mm2、156×156mm2甚至更大規(guī)模的單片電池,厚度從原來的300微米減小到250、200及200微米以下。效率得到大幅度的提高。日本京磁(Kyocera)公司150×150的電池小批量生產的光電轉換效率達到17.1%,該公司1998年的生產量達到25.4MW。
絲網印刷及其相關技術
多晶硅電池的規(guī)?;a中廣泛使用了絲網印刷工藝,該工藝可用于擴散源的印刷、正面金屬電極、背接觸電極,減反射膜層等,隨著絲網材料的改善和工藝水平的提高,絲網印刷工藝在太陽電池的生產中將會得到更加普遍的應用。
a.發(fā)射區(qū)的形成
利用絲網印刷形成PN結,代替常規(guī)的管式爐擴散工藝。一般在多晶硅的正面印刷含磷的漿料、在反面印刷含鋁的金屬漿料。印刷完成后,擴散可在網帶爐中完成(通常溫度在900度),這樣,印刷、烘干、擴散可形成連續(xù)性生產。絲網印刷擴散技術所形成的發(fā)射區(qū)通常表面濃度比較高,則表面光生載流子復合較大,為了克服這一缺點,工藝上采用了下面的選擇發(fā)射區(qū)工藝技術,使電池的轉換效率得到進一步的提高。
b.選擇發(fā)射區(qū)工藝
在多晶硅電池的擴散工藝中,選擇發(fā)射區(qū)技術分為局部腐蝕或兩步擴散法。局部腐蝕為用干法(例如反應離子腐蝕)或化學腐蝕的方法,將金屬電極之間區(qū)域的重擴散層腐蝕掉。最初,Solarex應用反應離子腐蝕的方法在同一臺設備中,先用大反應功率腐蝕掉金屬電極間的重摻雜層,再用小功率沉積一層氮化硅薄膜,該膜層發(fā)揮減反射和電池表面鈍化的雙重作用。在100cm2的多晶上作出轉換效率超過13%的電池。在同樣面積上,應用兩部擴散法,未作機械絨面的情況下轉換效率達到16%。
c.背表面場的形成
背PN結通常由絲網印刷A漿料并在網帶爐中熱退火后形成,該工藝在形成背表面結的同時,對多晶硅中的雜質具有良好的吸除作用,鋁吸雜過程一般在高溫區(qū)段完成,測量結果表明吸雜作用可使前道高溫過程所造成的多晶硅少子壽命的下降得到恢復。良好的背表面場可明顯地提高電池的開路電壓。
d.絲網印刷金屬電極
在規(guī)?;a中,絲網印刷工藝與真空蒸發(fā)、金屬電鍍等工藝相比,更具有優(yōu)勢,在當今的工藝中,正面的印刷材料普遍選用含銀的漿料,其主要原因是銀具有良好的導電性、可焊性和在硅中的低擴散性能。經絲網印刷、退火所形成的金屬層的導電性能取決于漿料的化學成份、玻璃體的含量、絲網的粗糟度、燒結條件和絲網版的厚度。八十年度初,絲網印刷具有一些缺陷,Ⅰ)如柵線寬度較大,通常大于150微米;Ⅱ)造成遮光較大,電池填充因子較低;Ⅲ)不適合表面鈍化,主要是表面擴散濃度較高,否則接觸電阻較大。如今用先進的方法可絲網印出線寬達50微米的柵線,厚度超過15微米,方塊電阻為2.5~4mΩ,該參數可滿足電池的要求。有人在15×15平方厘米的Mc—Si上對絲網印刷電極和蒸發(fā)電極所作太陽電池進行了比較,各項參數幾乎沒有差距。