孔金屬化:多層板的 “關鍵步驟”
多層板的過孔(孔徑通常 0.2-0.8mm)內壁為絕緣樹脂,需通過以下步驟實現(xiàn)導電:
除膠渣:用高錳酸鉀溶液氧化孔壁的樹脂殘渣(鉆孔時產(chǎn)生),避免殘渣影響金屬附著。
化學鍍銅(沉銅):在無外接電源的情況下,將基板浸入含硫酸銅、甲醛(還原劑)的鍍液中,通過化學反應在孔壁和基板表面沉積一層薄銅(厚度 0.5-1μm),形成初始導電層。
原理:甲醛將 Cu2?還原為 Cu 單質,均勻附著在非導電的孔壁上。
電解鍍銅(加厚銅):將沉銅后的基板作為陰極,放入含硫酸銅、硫酸的鍍液中,通以直流電(電流密度 1-2A/dm2),使銅離子在陰極放電沉積,將孔壁和線路銅層增厚至 15-35μm(滿足電流承載需求)。
隨著 PCB 向 “高密度、高頻率、小型化” 發(fā)展,電鍍工藝也在不斷升級:
無鉛化:受環(huán)保法規(guī)(如 RoHS)要求,傳統(tǒng)錫鉛電鍍已逐步被無鉛錫合金(如 Sn-Cu-Ni)替代。
薄化與精細化:針對 Mini LED、IC 載板等高端 PCB,需實現(xiàn) “超薄金屬層”(如金層厚度 綠色電鍍:開發(fā)低污染鍍液(如無甲醛化學鍍銅液)、廢水回收系統(tǒng)(如銅離子回收裝置),降低電鍍過程的環(huán)境影響。
化學鍍(Electroless Plating,無電解電鍍)
核心原理:無需外接電源,通過電鍍液中的還原劑(如甲醛、次磷酸鈉)與金屬離子發(fā)生氧化還原反應,使金屬離子在 PCB 表面(需先吸附催化劑,如鈀)自催化沉積為鍍層。
工藝特點:
鍍層厚度均勻性(可滲透至 PCB 盲孔、埋孔的微小縫隙,解決 “電流無法到達” 的問題);
無需導電基底(可在絕緣基材表面沉積金屬,為后續(xù)電鍍做 “導電種子層”);
沉積速率慢(銅鍍層約 1~3μm/h),成本高于電解電鍍。
PCB 應用場景:
PCB“盲孔 / 埋孔電鍍” 的打底(先化學鍍銅 1~2μm,形成導電層,再進行電解電鍍增厚);
柔性 PCB(FPC)的鍍層(避免電流不均導致的鍍層開裂,保證柔性基材上鍍層的完整性);
絕緣基材(如陶瓷 PCB)的金屬化(在陶瓷表面化學鍍銅 / 鎳,實現(xiàn)導電連接)。
不同電鍍方式的核心差異對比
電鍍方式 核心動力 鍍層均勻性 沉積速率 主要應用場景
直流電鍍 恒定直流電源 較好 中等 全板基礎鍍層、常規(guī)線路
脈沖電鍍 脈沖電源 優(yōu) 中等 高密度 PCB 精密線路、高耐蝕鍍層
高速電鍍 高電流 + 強循環(huán) 一般 快 通孔厚銅、批量生產(chǎn)
選擇性電鍍 遮蔽 + 局部通電 針對性優(yōu) 中等 金手指、局部焊盤特殊鍍層
化學鍍 自催化反應 慢 盲孔 / 埋孔打底、絕緣基材金屬化
垂直連續(xù)電鍍 連續(xù)通電 + 噴射 優(yōu) 快 大批量 PCB 全板 / 通孔電鍍